2024高考物理模型全归纳-02、含弹簧的物理模型(原卷版)

2024-01-05·9页·531.4 K

模型二、含弹簧的物理模型【模型概述】纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重。高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系,能很好能很好地考查学生的综合分析能力。【模型特点】中学物理中的“弹篑”和“橡皮绳”也是理想化模型,具有如下几个特性:(1)弹力遵循胡克定律F=kx,其中x是弹簧的形变量。(2)轻:即弹簧(或橡皮绳)的重力可视为零。(3)弹簧既能受拉力,也能受压力(沿着弹簧的轴线),橡皮绳只能受拉力,不能受压力。(4)由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变。但是,当弹簧和橡皮绳被剪断时,它们产生的弹力立即消失。【模型解题】胡克定律、牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律【模型训练】【例1】如图所示,一劲度系数为k、原长为l0的轻弹簧,上端固定在天花板上,下端悬挂一个质量为m的小球,小球处于静止状态。弹簧的形变在弹性限度内。已知重力加速度为g。下列判断中正确的是()A.弹簧的伸长量为B.弹簧的伸长量为 mgkC.弹簧的总长度为l0+ mgkD.弹簧的总长度为 变式1.1如图所示,将一轻弹簧上端悬挂在天花板上,下端连接物体A,A下面再用棉线挂一物体B,A、B质量相等,g为当地重力加速度。烧断棉线,下列说法中正确的是()A.烧断棉线瞬间,A的加速度大小为gB.烧断棉线之后,A向上一直加速C.烧断棉线之后,A在运动中机械能守恒D.在最高点弹簧弹力等于mg变式1.2两根相同的轻弹簧的原长均为l,将两弹簧与两相同物体按如图所示的方式连接并悬挂于天花板上,静止时两根弹簧的总长为2.6l,现用手托着B物体,使下面的弹簧2恢复到原长,则下面说法正确的有()A.悬挂稳定时弹簧1的长度为1.2l,弹簧2的长度为1.4lB.弹簧2恢复原长时弹簧1长度为1.4lC.物体A上升的距离为0.4lD.物体B上升的距离为0.4l【例2】如图所示,内壁光滑的半球形容器固定在水平面上。将一轻弹簧的一端固定在半球形容器底部处,为球心。当弹簧另一端与质量为的小球相连时,小球静止于点。已知与水平方向的夹角为,则半球形容器对球的支持力和弹簧的弹力分别为() ()A.,B.,C.,D., 变式2.1如图所示,质量均为m的A、B两球,由一根劲度系数为k的轻弹簧连接静止于半径为R的光滑半球形碗中,弹簧水平,两球间距为R且球半径远小于碗的半径.则弹簧的原长为()A.RB.RC.RD.R变式2.2如图所示,在半径为R的光滑半球形碗中,一根水平放置的轻弹簧两端连接A、B两球,两球静止于半球形碗中。已知A、B球质量均为m,轻弹簧的劲度系数为k,A、B两球之间的距离为R,球的半径远小于碗的半径,求:(1)半球形碗对A球的支持力大小;(2)弹簧的原长。【例3】如图所示,质量分别为m1和m2的两块方木中间以轻弹簧相连,在空中设法使弹簧处于自然长度(即其中没有弹力)后,给它们相同的初速度,向上抛出。在空中时,发现系统始终保持竖直,且弹簧长度保持自然长度。空气阻力不计。则()A.m1一定等于m2B.m1一定大于m2C.m1一定小于m2D.不能通过该现象判断m1和m2的大小关系变式3.1如图所示,一小球从空中下落,从它刚接触弹簧到把弹簧压缩至最短的过程中,若不计空气阻力,则关于小球能量的变化,下列判断正确的是()A.动能一直减小B.动能先增加后减小C.机械能先增加后减小D.机械能保持不变变式3.2如图所示,用轻弹簧将质量均为m=1kg的物块A和B连接起来,将它们固定在空中,弹簧处于原长状态,A距地面的高度h1=0.15m.同时释放两物块,设A与地面碰撞后速度立即变为零,由于B压缩弹簧后被反弹,使A刚好能离开地面(但不继续上升).已知弹簧的劲度系数k=100N/m,取g=10m/s2.求:(1)物块A刚到达地面的速度;(2)物块B反弹到最高点时,弹簧的弹性势能;(3)若将B物块换为质量为2m的物块C(图中未画出),仍将它与A固定在空中且弹簧处于原长,从A距地面的高度为h2处同时释放,C压缩弹簧被反弹后,A也刚好能离开地面,此时h2的大小.【例4】如图所示,一质量不计的弹簧原长为x0=12cm,一端固定于质量m=3kg的物体上,另一端一水平拉力F。物体与水平面间的动摩擦因数=0.225,当弹簧拉长至x1=16.5cm时,物体恰好向右匀速运动(设最大静摩擦力与滑动摩擦力相等,弹簧始终在弹性限度内,);(1)若将弹簧压缩至x2=8cm,求物体受到的摩擦力大小及方向。(2)若将弹簧拉长至x3=18cm ,求物体体受到的摩擦力大小及方向。变式4.1如图所示,一质量m=3kg的物体静止在水平面上,物体与水平面间的动摩擦因数,原长的轻质弹簧一端固定于物体上,另一端施一水平拉力F。已知最大静摩擦力与滑动摩擦力相等,弹簧始终在弹性限度内,重力加速度g取。(1)当弹簧长度为21cm时,物体恰好向右匀速运动,求弹簧的劲度系数;(2)当弹簧长度为12cm时,求物体受到的摩擦力;(3)当弹簧长度为23cm时,求物体受到的摩擦力。变式4.2如图所示,两木块A、B质量分别为、,中间由水平轻质弹簧相连,弹簧劲度系数,弹簧允许的最大形变量为15cm,水平拉力作用在木块A上,系统恰好在水平面上做匀速直线运动,重力加速度大小g取,已知木块A、B与水平面间的动摩擦因数相同且均为(大小未知)。求:(1)的值;(2)弹簧的伸长量为多少;(3)若将另一木块C放置在木块B上,施加拉力,使系统仍做匀速运动(弹簧在弹性限度内),拉力的最大值是多少?木块C的质量是多少?【例5】如图所示,倾角为的斜面固定在水平地面上,轻弹簧的一端固定在斜面的底端,弹簧处于原长时另一端与斜面上的点平齐。质量为的小滑块从斜面上的点由静止下滑,滑块在点接触弹簧并压缩弹簧到点时开始弹回。已知、间的距离为0.4m,、间的距离为0.2m,弹簧始终处于弹性限度内,重力加速度取,取3.87。(1)若斜面光滑,求滑块运动中弹簧弹性势能的最大值:(2)若滑块第1次离开弹簧后,沿斜面上升的最高点位于、的中点,求滑块第2次经过点时的速度大小。(结果保留3位有效数字)变式5.1如图所示,一轻弹簧一端固定在倾角为=37的固定斜面的底端,另一端拴住质量为m1=6kg的物体P,Q为一质量m2=10kg的物体,系统处于静止状态,弹簧的压缩量x0=0.16m。现给物体Q施加一个方向沿斜面向上的力F,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2s时间内,F为变力,0.2s以后F为恒力。已知斜面光滑且足够长,sin37=0.6,cos37=0.8,g取10m/s2求:(1)弹簧的劲度系数k;(2)物体Q做匀加速运动的加速度大小a;(3)前0.2s内拉力F做的功。变式5.2如图所示,质量 的物块放在竖直弹簧上端并紧挨着竖直墙壁,水平向左、大小 的力作用在物块上,物块恰好不下滑,此时弹簧的长度。已知弹簧的劲度系数、原长 ,物块与竖直墙壁之间的最大静摩擦力等于滑动摩擦力,取重力加速度大小 ,求:(1)弹簧对物块的弹力大小;(2)竖直墙壁对物块的摩擦力大小和方向;(3)物块与竖直墙壁之间的动摩擦因数。【例6】如图所示,质量为10kg的物体M放在倾角为的固定斜面上,M与斜面间动摩擦因数,M用平行于斜面的轻绳绕过光滑定滑轮与质量为8kg的物块m相连。劲度系数k200N/m的弹簧与m相连,也与地面相连,设最大静摩擦力和滑动摩擦力相等,重力加速度取,求:(1)若M静止在斜面上,弹簧伸长量为8cm,求M所受到的摩擦力;(2)若M刚要开始运动,求此时弹簧对物块的弹力的大小。变式6.1如图所示,质量为m的小球甲穿过一竖直固定的光滑杆拴在轻弹簧上,质量为4m的物体乙用轻绳跨过光滑的定滑轮与小球甲连接,开始用手托住物体乙,轻绳刚好伸直,滑轮左侧绳竖直,右侧绳与水平方向夹角为,某时刻由静止释放物体乙(足够高),经过一段时间小球甲运动到Q点,O、Q两点的连线水平,,且小球甲在P、Q两点处时弹簧的弹力大小相等。已知重力加速度为g,,。求:(1)弹簧的劲度系数k;(2)小球甲位于Q点时的速度大小v;(3)在小球甲从P点上升到PQ中点的过程中,弹簧弹力做的功W。变式6.2如图所示,质量为10kg的物体M放在倾角为的斜面上,M与斜面间摩擦因数,M用平行于斜面的轻绳绕过光滑定滑轮与质量为5kg的物块m相连。劲度系数k200N/m的弹簧与m相连,也与地面相连,设最大静摩擦力和滑动摩擦力相等。(1)若M静止在斜面上,弹簧伸长量为8cm,求此时绳子上的拉力大小;(2)在第一问的基础上,求M所受到的摩擦力的大小和方向;(3)若M刚要开始运动,求此时弹簧弹力的大小。【例7】如图所示,粗糙水平面长为,与竖直面内半径为的光滑半圆形轨道在点相接。质量为的物体甲(可视为质点)将弹簧压缩到点后由静止释放,甲脱离弹簧后,在水平面滑行一段距离后滑上竖直轨道,并恰好能通过点。已知甲与水平面间的动摩擦因数,重力加速度为。(1)求甲通过点时的速度大小;(2)求弹簧被压缩到点时的弹性势能;(3)若在点放置另一个质量为的物体乙(可视为质点,图中未画出),使甲把弹簧仍然压缩到点,由静止释放甲,甲、乙发生弹性正碰后,撤去甲,此后乙沿半圆形轨道运动,通过计算说明乙离开半圆形轨道后将如何运动。变式7.1一光滑水平面与竖直面内的圆形粗糙轨道在B点相切,轨道半径,一个质量的小物块在A处压缩一轻质弹簧,弹簧与小物块不拴接。用手挡住小物块不动,此时弹簧弹性势能。如图所示,放手后小物块向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C,不计空气阻力,。求:(1)物块在B点时半圆轨道对它的支持力大小;(2)小物块从B到C过程,阻力做的功;(3)小物块离开C点后落回水平面的位置到B点的水平距离x。变式7.2如图所示,竖直面内、半径为R=1m的光滑圆弧轨道底端切线水平,与水平传送带 左端B靠近,传送带右端C与一平台靠近,圆弧轨道底端、传送带上表面及平台位于同一水平面,圆弧所对的圆心角为53,传送带长为1 m,以v=4 m/s的恒定速度沿顺时针匀速转动,一轻弹簧放在平台上,弹簧右端固定在竖直墙上,弹簧处于原长,左端与平台上D点对 齐,CD长也为1 m,平台D点右侧光滑,重力加速度为g=10m/s2,让质量为1 kg的物块从圆弧轨道的最高点A由静止释放,物块第二次滑上传送带后,恰好能滑到传送带的左端 B点,不计物块的大小,物块与传送带间的动摩擦因数为0.5.(1)求物块运动到圆弧轨道最底端时对轨道的压力大小;(2)物块第一次到达C点的速度(3)物块第一次压缩弹簧,弹簧获得的最大弹性势能是多少?

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐